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Abstract. We study a generalization of necessity functions to MV-algebras.
In particular, we are going to study belief functions whose associated mass
assignments have nested focal elements. Since this class of belief functions
coincides with necessity functions on Boolean algebras, we will call them gen-
eralized necessity functions. Using geometrical and combinatorial techniques
we provide several characterizations of these functions in terms of Choquet
integral, Lebesgue integral, and min-plus polynomials.
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1 Introduction

There are at least two different, yet equivalent, ways to define necessities on
Boolean algebras [4]. If the Boolean algebra is the set 2X of all subsets of
a given universe X , then the first approach consists in axiomatizing a ne-
cessity N : 2X → [0, 1] as a map satisfying N(X) = 1, N(∅) = 0, and
N(A ∩B) = min {N(A), N(B)}. According to the second way, a necessity is
viewed as a belief function [15] defined by a mass assignment μ : 2X → [0, 1]
such that the class of its focal elements {A ⊆ X | μ(A) > 0 } is a chain with
respect to the set inclusion. Since the former axiomatic approach can be
traced back to Halpern’s belief measures [6], we will henceforth distinguish
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between necessity measures, if the former is the case, and necessity functions
in the latter case. These two ways of introducing necessities on Boolean alge-
bras are equivalent. Specifically, a map N : 2X → [0, 1] is a necessity measure
if and only if N is a necessity function.

Since MV-algebras [1] are among important many-valued generalizations
of Boolean algebras, which provide a useful algebraic framework to deal with
a certain and a relevant class of fuzzy sets, it is natural to ask what hap-
pens when we generalize necessity measures and necessity functions to these
algebraic structures. Moreover, it is worth noticing that, as it was already
remarked in [3], the generalizations of necessity measures and necessity func-
tions to MV-algebras do not lead to one single concept as in the Boolean
case. Hence it makes sense to study those notions separately.

In [5] the authors provide an axiomatic approach to necessity measures
on MV-algebras and they show that they are representable by generalized
Sugeno integrals. In this paper we characterize generalized necessity func-
tions in the framework of the generalization of belief functions to MV-algebras
proposed in [12]. In particular, we are going to use geometrical and combina-
torial tools to provide several characterizations for these measures in terms
of Choquet integral, Lebesgue integral, and min-plus polynomial.

The paper is organized as follows. In Section 2 we introduce the preliminar-
ies about MV-algebras and states. We recall the theory of belief functions on
Boolean algebras together with the equivalence between the two approaches
to necessities in Section 3. Section 4 introduces generalized necessity func-
tions with the main characterization (Proposition 3). Due to lack of space we
are unable to include proofs; however, we provide examples to clarify main
features of the discussed concepts.

2 Basic Notions

MV-algebras [1] play the same role for �Lukasiewicz logic as Boolean algebras
for the classical two-valued logic. An MV-algebra is an algebra (M,⊕,¬, 0),
where M is a non-empty set, the algebra (M,⊕, 0) is an abelian monoid, and
these equations are satisfied for every x, y ∈ M : ¬¬x = x, x ⊕ ¬0 = ¬0,
¬(¬x ⊕ y) = ¬(¬y ⊕ x).

In every MV-algebra M , we define the constant 1 = ¬0 and the following
binary operations: for all x, y ∈ M , put x � y = ¬(¬x ⊕ ¬y), x ∨ y =
¬(¬x ⊕ y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y). For every x, y ∈ M , we write x ≤ y iff
¬x ⊕ y = 1 holds in M . As a matter of fact, ≤ is a partial order on M , and
M is said to be linearly ordered whenever ≤ is a linear order.

Example 1. Every Boolean algebra A is an MV-algebra in which the opera-
tions⊕ and ∨ coincide (similarly, the operations� and ∧ coincide). Moreover,
in every MV-algebra M , the set B(M) = { x | x⊕ x = x } of its idempotent
elements is the domain of the largest Boolean subalgebra of M (the so-called
Boolean skeleton of M).
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Example 2. Endow the real unit interval [0, 1] with the operations x ⊕ y =
min{1, x + y} and ¬x = 1− x. Then ([0, 1],⊕,¬, 0) becomes an MV-algebra
called the standard MV-algebra. In this algebra, x � y = max{0, x + y − 1},
x ∧ y = min{x, y} and x ∨ y = max{x, y}. The two operations �, ⊕ are the
so-called �Lukasiewicz t-norm and the �Lukasiewicz t-conorm, respectively.

Example 3. Let X be a nonempty set. The set [0, 1]X of all functions X →
[0, 1] with the pointwise operations of the MV-algebra [0, 1] is an MV-algebra.
In particular, if X is a finite set, say X = {1, . . . , n}, then we can identify
the MV-algebra [0, 1]X with the n-cube [0, 1]n and each a ∈ [0, 1]X with the
n-dimensional vector a = (a1, . . . , an) ∈ [0, 1]n. The set of vertices of [0, 1]n

coincides with the Boolean skeleton of [0, 1]n.

Throughout the paper, we will assume that X is always finite whenever we
write [0, 1]X . The MV-algebra [0, 1]X is the natural algebraic framework for
studying belief functions in �Lukasiewicz logic (cf. [10]). The extensions to-
wards infinite X are possible and mathematically nontrivial (see [11, 12]).
Herein we confine to the case of finite X for the sake of clarity.

Normalized and additive maps on MV-algebras (so-called states) were
introduced in [7, 13]. States are many-valued analogues of probabilities on
Boolean algebras. A state on an MV-algebra M is a function s : M → [0, 1]
satisfying the following properties:

(i) s(0) = 0, s(1) = 1,
(ii) s(x⊕ y) = s(x) + s(y), whenever x� y = 0.

Observe that the restriction of every state s on M to its Boolean skeleton
B(M) is a finitely additive probability measure on B(M). Much more is
known: every MV-algebra M is (isomorphic to) an MV-algebra of continuous
functions over some compact Hausdorff space X (see [1]) and each state on M
is the Lebesgue integral with respect to a unique regular Borel probability
measure on X (see [8] or [14]). In case of the MV-algebra [0, 1]X with finite X ,
the previous fact can be formulated as follows. Observe that every probability
measure on 2X with X = {1, . . . , n} can be represented by a unique vector
μ from the standard n-simplex Δn = { μ ∈ R

n | μi ≥ 0,
∑n

i=1 μi = 1 }.
Proposition 1 ( [8,14]). Let X = {1, . . . , n}. If s is a state on M = [0, 1]X,
then there exists a unique μ ∈ Δn such that

s(a) =
n∑

i=1

aiμi, for each a ∈M .

Moreover, the coordinates of μ are μi = s({i}), provided {i} is identified with
its characteristic function, for each i ∈ X.

3 Necessity Functions

See [15] for an in-depth treatment of Dempster-Shafer theory of belief func-
tions. Let X be a finite set and M = 2X . A mass assignment μ is a function
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2X → [0, 1] satisfying μ(∅) = 0 and
∑

A∈2X μ(A) = 1. A belief function
(with the mass assignment μ) is a function Bel : 2X → [0, 1] given by
Bel(A) =

∑
B⊆A μ(B), for each A ∈ 2X . Each A ∈ 2X with μ(A) > 0 is

said to be a focal element. A mass assignment μ is called nested provided
the set of its focal elements

{
A ∈ 2X

∣∣ μ(A) > 0
}

is a chain in 2X with re-
spect to the set inclusion. By definition every belief function Bel is uniquely
determined by the restriction of its mass assignment to the set of all focal ele-
ments. A necessity function on 2X is a belief function whose mass assignment
is nested. This can be rephrased as follows: a belief function is a necessity
function iff its mass assignment determines a finitely additive probability on
22X

that is supported by a chain and vanishing at the singleton {∅}.
If Bel is a belief function on 2X , then the credal set of Bel is the following

set C(Bel) of finitely additive probability measures P on 2X :

C(Bel) =
{
P
∣∣ P (A) ≥ Bel(A), A ∈ 2X

}
.

It is well-known that Bel arises as the lower envelope of C(Bel):

Bel(A) =
∧

P∈C(Bel)

P (A), for each A ∈ 2X .

Example 4. Let A ∈ 2X be nonempty and put BelA(B) = 1, if A ⊆ B,
and BelA(B) = 0, otherwise. Then BelA is a necessity function whose mass
assignment is

μA(B) =

{
1, A = B,

0, otherwise.
(1)

The credal set C(BelA) is just the set of all probabilities whose support is
the set A. Specifically, this means that C(BelA) is (affinely isomorphic to)
the simplex Δ|A|, where |A| is the cardinality of A. Observe that A ⊆ B iff
C(BelA) ⊆ C(BelB) iff Δ|A| ⊆ Δ|B|.

In the next proposition we summarize some of the characterizations of neces-
sity functions that appeared in the literature. Our goal is to compare these
descriptions with the properties of extensions of necessity functions to MV-
algebras in Section 4.

Proposition 2. Let Bel be a belief function on 2X with the mass assign-
ment μ. Then the following are equivalent:

(i) Bel is a necessity function,
(ii) Bel(A ∩B) = Bel(A) ∧Bel(B), for each A,B ∈ 2X ,

(iii) the set
{
C(BelA)

∣∣ A ∈ 2X , μ(A) > 0
}

is a chain and

C(Bel) =
∑

A∈2X

μ(A)>0

μ(A)C(BelA), (2)
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where the sum and the multiplication in (2) are the Minkowski sum of
sets and the pointwise multiplication of sets of vectors, respectively,

(iv) there exist n ∈ {1, . . . , |X |}, a vector α = (α1, . . . , αn) ∈ Δn with all
coordinates positive, and a chain of standard simplices Δi1 ⊂ · · · ⊂ Δin ,
where in ≤ n, such that C(Bel) is (affinely isomorphic to) the Minkowski
sum

∑n
j=1 αjΔij .

The equivalence of (i) with (ii) was proven in [15]. The properties (iii)-(iv)
are a purely geometrical way to describe necessities by the composition of
the associated credal sets. This approach has appeared first in [9], where the
equivalence of (i) with (iii) was proven in a slightly more general setting. The
property (iv) is just a direct reformulation of (iii). Geometrical treatment of
belief functions appeared also in [2], where the properties of the set of all
belief functions are discussed.

4 Generalized Necessity Functions

We will introduce the generalized necessity functions as particular cases of
generalized belief functions in �Lukasiewicz logic (cf. [10]). The starting point
for this research was the generalization of Möbius transform established in
a fairly general framework [11]. The interested reader is referred to those
papers for further motivation and details.

If X = {1, . . . , n}, then by P we denote the set 2X \ {∅}. Let MP be
the MV-algebra of all functions P → [0, 1]. We will consider the following
embedding ρ of the MV-algebra M = [0, 1]n into MP :

ρ : M × P → [0, 1], ρa(A) =
∧

i∈A

ai, for each a ∈M , A ∈ P .

If a ∈M is fixed and ρa(∅) := 0, then observe that function ρa : 2X → [0, 1]
is a necessity measure on 2X .

Definition 1. Let M be the MV-algebra [0, 1]X . A state assignment is a state
s on MP . If s is a state assignment, then a (generalized) belief function Bel∗

on M is given by Bel∗(a) = s(ρa), a ∈M . We say that a belief function Nec∗

on M is a (generalized) necessity function if the finitely additive probability
on 22P

corresponding to its state assignment (via Proposition 1) is supported
by a chain.

Example 5. Let A ∈ P and put Bel∗A(a) = ρa(A). Clearly, function Bel∗A is
a necessity function. Its state assignment sA is given by sA(f) = f(A), for
each f ∈MP .

Remark 1. Following the analogy with Proposition 2(ii), necessity measures
on an MV-algebra M have been recently introduced in [5] as mappings N :
M → [0, 1] such that N(1) = 1, N(0) = 0, and for every a, b ∈M , N(a∧b) =
N(a) ∧ N(b). It was observed already in [3] by Dubois and Prade that, in



624 T. Flaminio and T. Kroupa

sharp contrast with the classical case (cf. Proposition 2), necessity functions
are not necessity measures. Indeed, generalized necessity functions do not
satisfy the property N(a∧ b) = N(a)∧N(b), in general: this follows directly
from Definition 1.

Let Bel∗ be a belief function on M = [0, 1]X and let s be its associated state
assignment. Clearly, for each A ∈ P , the mass assignment μA from (1) is
an element of MP . As a direct consequence of the definition of state, the
function μs : 2X → [0, 1] defined by μs(A) = s(μA) for every A ∈ P , and
zero otherwise, is a mass assignment. Hence Bel∗(a) =

∑
A∈MP ρa(A)μs(A),

for each a ∈M , which follows from Proposition 1.
If Bel∗ is a belief function on M , then the credal set of Bel∗ is the following

set C(Bel∗) of states s on M :

C(Bel∗) = { s | s(a) ≥ Bel∗(a), a ∈M } .

It can be shown that Bel∗ is the lower envelope of C(Bel∗):

Bel∗(a) =
∧

s∈C(Bel∗)

s(a), for each a ∈M . (3)

In the following proposition we give several equivalent formulations de-
scribing generalized necessity functions within the class of generalized belief
functions. In particular, some of the properties directly correspond to the
respective properties of necessity functions—see Proposition 2.

Proposition 3 (Characterization of generalized necessity functions).
Let X = {1, . . . , n} and Bel∗ be a belief function on the MV-algebra M =
[0, 1]n with the state assignment s and the mass assignment μs. Then the
following are equivalent:

(i) Bel∗ is a necessity function,
(ii) there exists a necessity measure Nec on 2X such that

Bel∗(a) =
∫
Ca d Nec, a ∈M,

where the discrete integral above is the Choquet integral,
(iii) the mass assignment μs is nested on a chain A ⊆ P such that

Bel∗(a) =
∑

A∈A
μs(A)ρa(A), a ∈M,

(iv) the mass assignment μs is nested on a chain A1 ⊂ · · · ⊂ Ak such that

Bel∗(a) =
∧

(i1,...,ik)∈I

k∑

j=1

μs(Aj)aij , a ∈M,

where I = A1 × · · · ×Ak,
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(v) there exists a maximal chain A = A1 ⊂ A2 ⊂ · · · ⊂ An = X in 2X and
a mass assignment μ nested on A such that

Bel∗(a) =
n!∧

s=1

(
n∑

i=1

μ(Ai) · af−1(s)(i)

)
, a ∈M,

where f : A1 × . . .×An → {1, 2, . . . , n!} is a bijection,
(vi) the set

{
C(Bel∗A)

∣∣ A ∈ 2X ,μs(A) > 0
}

is a chain and

C(Bel∗) =
∑

A∈2X

μs(A)>0

μs(A)C(Bel∗A),

(vii) there exist n ∈ {1, . . . , |X |}, a vector α = (α1, . . . , αn) ∈ Δn with each
αi ≥ 0, and a chain of standard simplices Δi1 ⊂ · · · ⊂ Δin , where
in ≤ n, such that C(Bel∗) is (affinely isomorphic to) the Minkowski sum∑n

j=1 αjΔij .

Proposition 3, whose proof is omitted due to a lack of space, provides a num-
ber of interpretations of necessity functions. In particular, (ii) means that
each generalized necessity function is recovered as the Choquet integral ex-
tension of a necessity measure. The properties (vi)-(vii) say that the credal
set of a generalized necessity function is built from “nested” simplices in
a very special way—observe that this is identical with the property of ne-
cessity functions on Boolean algebras (Proposition 2(iii)-(iv)). The min-sum
formula in (iv) is then a consequence of this geometrization together with
(3): when minimizing a linear function given by a ∈ [0, 1]n over C(Bel∗), it
suffices to seek the minimum among the elements of any finite set containing
the vertices of the convex polytope C(Bel∗). Notice that although the equiv-
alence between (iv) and (v) is clear, because in fact (v) is a particular case of
(iv), (v) can be easily proved to be equivalent to (iii) by using a combinatorial
argument. The results are illustrated with a simple example.

Example 6. Let X = {1, 2, 3} and M = [0, 1]X . Suppose that Nec is the
necessity measure on 2X whose mass assignment μ is defined as μ({1}) = 1

8 ,
μ({1, 2}) = 4

8 , μ(X) = 3
8 . The necessity function Nec∗ associated with Nec

via Proposition 3(ii) is then

Nec∗(a) = 1
8a1 + 4

8 (a1 ∧ a2) + 3
8 (a1 ∧ a2 ∧ a3),

for each a ∈ [0, 1]3. Due to Proposition 3(vi), the credal set C(Nec∗) can
be identified with the Minkowski sum 1

8Δ1 + 4
8Δ2 + 3

8Δ3. This is a convex
polytope embedded in Δ3 with the four vertices (1, 0, 0), (1

8 ,
7
8 , 0), (5

8 , 0,
3
8 ),

and (1
8 ,

4
8 ,

3
8 ). This means together with Proposition 3(v) that we get the

min-sum formula
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Nec∗(a) = a1 ∧
(

1
8a1 + 7

8a2

)
∧
(

5
8a1 + 3

8a3

)
∧
(

1
8a1 + 4

8a2 + 3
8a3

)
.
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